Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Int J Mol Sci ; 24(12)2023 Jun 09.
Artigo em Inglês | MEDLINE | ID: mdl-37373112

RESUMO

Titanium dioxide nanoparticles (TiO2 NPs) have been widely used in food, cosmetics, and biomedical research. However, human safety following exposure to TiO2 NPs remains to be fully understood. The aim of this study was to evaluate the in vitro safety and toxicity of TiO2 NPs synthesized via the Stöber method under different washing and temperature conditions. TiO2 NPs were characterized by their size, shape, surface charge, surface area, crystalline pattern, and band gap. Biological studies were conducted on phagocytic (RAW 264.7) and non-phagocytic (HEK-239) cells. Results showed that washing amorphous as-prepared TiO2 NPs (T1) with ethanol while applying heat at 550 °C (T2) resulted in a reduction in the surface area and charge compared to washing with water (T3) or a higher temperature (800 °C) (T4) and influenced the formation of crystalline structures with the anatase phase in T2 and T3 and rutile/anatase mixture in T4. Biological and toxicological responses varied among TiO2 NPs. T1 was associated with significant cellular internalization and toxicity in both cell types compared to other TiO2 NPs. Furthermore, the formation of the crystalline structure induced toxicity independent of other physicochemical properties. Compared with anatase, the rutile phase (T4) reduced cellular internalization and toxicity. However, comparable levels of reactive oxygen species were generated following exposure to the different types of TiO2, indicating that toxicity is partially driven via non-oxidative pathways. TiO2 NPs were able to trigger an inflammatory response, with varying trends among the two tested cell types. Together, the findings emphasize the importance of standardizing engineered nanomaterial synthesis conditions and evaluating the associated biological and toxicological consequences arising from changes in synthesis conditions.


Assuntos
Nanopartículas Metálicas , Nanopartículas , Humanos , Temperatura , Nanopartículas/toxicidade , Nanopartículas/química , Titânio/toxicidade , Titânio/química , Espécies Reativas de Oxigênio/metabolismo , Nanopartículas Metálicas/química
2.
PeerJ ; 9: e11328, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34046255

RESUMO

BACKGROUND: The aim of this study was to determine the individual and interactive effects of various irrigation regimes and fertilizer treatments on the quality of the Wonderful pomegranate cultivar. METHODS: Two field experiments were conducted over two consecutive growing seasons (2018 and 2019) to determine the individual and interactive effects of various organic and mineral fertilizer treatments on the fruit quality of the Wonderful pomegranate under various irrigation conditions. A split-plot experimental design was used, in which the main plots included three levels of irrigation (100%, 80%, and 60% of evapotranspiration) while the subplots included five fertilizer treatments with different co-application ratios of mineral and organic fertilizers. RESULTS: All tested physicochemical properties of the fruit were significantly affected by the irrigation treatment, with irrigation at 80% of evapotranspiration representing the best strategy for reducing water use and improving fruit quality. Moreover, the co-application of mineral and organic fertilizers had a significant effect on fruit quality, with 75% mineral + 25% organic fertilizer improving all of the physical and chemical properties of the fruit in both experimental seasons. Irrigation and the co-application of mineral and organic fertilizers also had a significant interaction effect on the physicochemical attributes of fruit, which further increased fruit quality. CONCLUSIONS: The co-application of organic and mineral fertilizers produced better quality pomegranate fruit than mineral fertilizer alone under deficit irrigation conditions. This technique could therefore be applied to improve the fruiting of horticultural trees in arid growing regions.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...